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Abstract 25	

The NOAA Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 26	

February 11, 2015, and in June 2015 achieved its orbit at the first Lagrange point or L1, 27	

1.5 million km from Earth towards the Sun.  There are two NASA Earth observing 28	

instruments onboard: the Earth Polychromatic Imaging Camera (EPIC) and the National 29	

Institute of Standards and Technology Advanced Radiometer (NISTAR).  The purpose of 30	

this paper is to describe various capabilities of the DSCOVR/EPIC instrument.  EPIC 31	

views the entire sunlit Earth from sunrise to sunset at the backscattering direction 32	

(scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 33	

388, 443, 552, 680, 688, 764 and 779 nm.  We discuss a number of pre-processing 34	

steps necessary for EPIC calibration including the geolocation algorithm and the 35	

radiometric calibration for each wavelength channel in terms of EPIC counts/second for 36	

conversion to reflectance units.  The principal EPIC products are total ozone O3 37	

amount, scene reflectivity, erythemal irradiance, UV aerosol properties, sulfur dioxide 38	

SO2 for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud 39	

products including cloud height.  Finally, we describe the observation of horizontally 40	

oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for 41	

vegetation properties.  42	

 43	

Capsule Summary 44	

The Earth Polychromatic Imaging Camera (EPIC) on board DSCOVR spacecraft is 45	

located at 1 million miles from Earth towards the Sun.  This paper describes EPIC 46	

calibration and products. 47	
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1. Introduction 48	

The Deep Space Climate Observatory (DSCOVR) was launched on February 11, 2015 to 49	

a Sun-Earth Lagrange-1 (L1) orbit, approximately 1.5 million kilometers from Earth 50	

towards the Sun.  Its mission is to provide continuous solar wind measurements for 51	

accurate space weather forecasting, and to observe the continuously full, sunlit disk of 52	

Earth from a new and unique vantage point.  The DSCOVR mission is a joint venture 53	

between NOAA, NASA and the U.S. Air Force.  NOAA is operating the spacecraft and 54	

performs operational space weather forecasting using the DSCOVR solar wind plasma 55	

and interplanetary magnetic field measurements.  The Air Force provided the SpaceX 56	

Falcon 9 launch vehicle.  NASA built the spacecraft, performed on-orbit checkout, and 57	

operates the two Earth-facing science instruments -- the Earth Polychromatic Imaging 58	

Camera (EPIC) and the NIST Advanced Radiometer (NISTAR).  This paper is limited to 59	

applications related to the EPIC instrument. 60	

 61	

EPIC consists of a 30-cm aperture Cassegrain telescope with a 0.62O field of view (FOV), 62	

which encompasses the Earth having a nominal size of 0.5O at the L1 vantage point.  63	

Light entering the Cassegrain telescope passes through a field-lens group, then a filter 64	

wheel, and finally is focused on a hafnium-coated 2048 x 2048 pixel CCD with 65	

sensitivity to UV, visible, and near-infrared (NIR) wavelengths.  The filter wheel 66	

contains 10 narrow band filters from 317.5 nm to 779.5 nm that were designed to obtain 67	

products similar to TOMS (Total Ozone Mapping Spectrometer, e.g., Herman et al., 68	

1997) and MODIS (Moderate Resolution Imaging Spectroradiometer, e.g., King et al., 69	

1992).  During the refurbishment phase, prior to launch, changes were made that 70	
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significantly improved EPIC capabilities.  The primary changes were a significant 71	

reduction of stray light (new filters and field lens group) and addition of the oxygen A- 72	

and B-bands to sense cloud and aerosol heights.   73	

 74	

Projected on the three-dimensional (3D) Earth, the sampling size is about 8 km at nadir 75	

(near the center of the image), which effectively increases to 10 km when EPIC’s point 76	

spread function is included.  In order to maximize time cadence by reducing transmission 77	

time, the images of all wavelength channels, except 443 nm, have been reduced to 1024 x 78	

1024 pixels.  This yields a resolution of 10 km for the color images, which has been 79	

verified by looking at the width of major low latitude rivers in Brazil and Egypt.  Of 80	

course, the effective resolution is proportional to the secant of the observing angle 81	

measured relative to the normal to the Earth’s surface (10 km at nadir and 20 km at 60O).  82	

The result for 2x2 pixel averaging is a spatial resolution at nadir of about 18 km.   83	

 84	

The Earth-observing geometry of the EPIC instrument is characterized by a nearly 85	

constant scattering angle (angle formed between the incident and scattered-to-satellite 86	

sunlight vectors) between 168.5° and 175.5°.  Figure 1 displays the Sun-Earth View 87	

(SEV) angle that is equal to 180o minus scattering angle.  The DSCOVR orbit around L1 88	

is smaller than that of SOHO (Solar and Heliospheric Observatory) and Wind, but similar 89	

to that of ACE (Advanced Composition Explorer).  It is important to note that the 90	

distance between DSCOVR and Earth changes approximately by 2000-2500 km per day, 91	

as part of its non-repeating Lissajous orbit, or about 0.16% of its nominal distance of 92	

1.5x106 km.  93	
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 94	

For the 4 UV channels, 317.5, 325, 340, and 388 nm, in-flight radiometric calibration is 95	

accomplished by comparison to the reflectance values measured by current well-96	

calibrated Low Earth Orbit (LEO) satellites observing scenes that match in time and 97	

observing angles with those from EPIC (Herman et al., 2018, see section 2.3).   98	

Calibration of the visible and NIR channels is accomplished using well-calibrated 99	

measured earth reflectance values obtained from the Terra and Aqua MODIS LEO 100	

satellite observations.  Lunar reflectance data are used to help calibrate the two 101	

wavelength channels sensitive to the Earth’s oxygen absorption (oxygen B- and A-bands: 102	

687.75 and 764.0 nm) relative to their adjacent reference channels 680 and 779.5 nm.  103	

The details of these calibration procedures are described in Section 2, below. 104	

 105	

There are natural and enhanced color EPIC images provided daily on the 106	

https://epic.gsfc.nasa.gov website.  The natural color images were created using the bands 107	

from EPIC that are within the human visual range.  They have been color, contrast and 108	

brightness adjusted to represent a human eye would perceive.  The RGB ratios of the 109	

enhanced color images were processed to emphasize land features.  In addition, the 110	

Rayleigh molecular scattering and attenuation of solar light by ozone was subtracted.  111	

The calculations accounted for Earth's spherical geometry. 112	

 113	

While MODIS on Terra and Aqua cross the equator at 10:30 and 13:30, respectively, 114	

DSCOVR/EPIC provides measurements of the sunlit face of Earth from sunrise to sunset.  115	

Figure 2 illustrates the key difference between the L1 (EPIC) and LEO (MODIS) 116	

observations, where the EPIC’s observation of Africa is at 10:56 UTC.  Since Terra 117	
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crosses equator at 10:30, the western part of the left image has a more similar cloud 118	

structure with EPIC (middle) than their eastern parts.  For Aqua crossing the equator at 119	

13:30, the eastern part of the right (MODIS) and middle (EPIC) images are more alike 120	

than their western parts. 121	

 122	

The paper structure is the following.  Next section discusses EPIC calibration starting 123	

from raw data, then the geolocation algorithm for Level 1 data; finally calibration of all 124	

EPIC channels converting engineering units of counts/second into reflectance.  Section 3 125	

describes Level 2 products.  First, there are O3 and Lambert Equivalent Reflectivity 126	

retrievals, then SO2 for volcanic eruptions and aerosol products, including atmospheric 127	

correction are discussed.  Description of cloud and vegetation Level 2 products completes 128	

this section.  Section 4 reports on first expected and unexpected capabilities of EPIC 129	

observations.  Finally, section 5 summarizes the results.   130	

 131	

2. Calibration 132	

2.1 Raw EPIC data calibration  133	

Before the raw EPIC data (counts/second) can be used for imagery and quantitative 134	

applications, a number of pre-processing steps must be taken.  Level-0 EPIC data are 135	

converted to Level-1A “corrected count rates” by correcting for detector, electronics, and 136	

optics-induced effects.  The major steps in the Level-0 to Level-1A conversion are 1) 137	

subtracting the dark offset and dark rate signals, 2) correcting electronics signal 138	

dependent non-linearity, 3) correcting thermal dependence of the EPIC sensitivity, 4) 139	

normalizing by the image integration time, 5) “flat-fielding” in order to remove pixel-to-140	
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pixel sensitivity differences, vignetting, and etaloning effects, and 6) correcting stray-141	

light effects to account for light that should be going to a particular pixel, but instead is 142	

scattered to other pixels.  The dark offset correction utilizes overclock pixels (Habibi, 143	

2017) present in each image and the dark rate correction is based on analysis of weekly 144	

in-flight shutter-closed dark rate measurements.  EPIC non-linearity, temperature 145	

sensitivity, and stray light corrections have been derived from pre-launch test data.  The 146	

EPIC flat-field correction is based on pre-flight test data and updated using analysis of in-147	

flight terrestrial observations taken over the first year of science operations.  Finally, for 148	

Level-1B data, the radiometric calibration factors for each wavelength channel are 149	

determined in terms of EPIC counts/second conversion to reflectance units (Geogdzhayev 150	

and Marshak, 2018; Herman et al., 2018). 151	

 152	

2.2 Geolocation Algorithm for Level-1A/1B Data 153	

EPIC image geolocation is a process which calculates the per-pixel latitude and longitude 154	

location for each wavelength’s image.  This includes both the astronomical calculations 155	

to relate the scene to the instrument, as well as heuristical calculations to correct errors 156	

beyond the spacecraft instrumentation accuracy and achieve pixel to coordinate accuracy, 157	

as well as pixel-to-pixel co-registration between images on different filters.  There are a 158	

number of challenges to achieving this correction, such as dealing with the rotation of the 159	

earth due to the .5-2 minute latency between imaging different wavelengths, correction 160	

for spacecraft rotation, jitter, atmospheric refraction correction, as well as an accurate 161	

optical model of the telescope.  The process of geolocation and georectification requires 162	

the images to be accurately mapped to a 3D model of the earth.  163	
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 164	
 165	
The Level 1A algorithm includes all the calculations required for geolocation on the 166	

images in their native format.  This uses the ephemerides and other spacecraft 167	

information to generate a 3D view of the Earth in the same aspect as seen from EPIC at 168	

L1.  A two-dimensional (2D) transformation of the 3D model, as it would appear on the 169	

CCD, is obtained using an instrument optical and model calculation.  This 2D 170	

transformation in turn provides the per-pixel geodetic coordinates, as well as sun and 171	

viewing angles.   Figure 3 depicts this process.  172	

 173	
 174	
The Level 1B algorithm produces images in which all wavelengths are regridded to the 175	

same common grid.  This includes correcting the images for changes in the scene due to 176	

Earth’s rotation, drift in spacecraft pointing, and the spacecraft’s own orbital motion.  As 177	

outlined in Fig. 3, the Level 1B algorithm takes the location information generated and 178	

maps the EPIC pixels into 3D models, 1 per band.  Each model is then rotated into the 179	

same orientation (north up, at a common universal time UT) and then projected and 180	

redrawn into a 2D image.  The result is all 10 wavelength band images share the same 181	

reference grid so that light for each pixel and wavelength comes from the same earth 182	

scene.  This is essential, since most of the science algorithms rely on ratios of different 183	

wavelength channels.  184	

 185	
 186	
There are still residual issues that affect the geolocation accuracy.  This includes errors 187	

with the star-tracker pointing, accuracy of the telescope optical model, image time stamps, 188	

and effects of atmospheric refraction. Work is currently underway that treats these 189	
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additional corrections to further improve science products beyond the basic requirements. 190	

 191	

2.3 Calibration of EPIC UV channels 192	

Since EPIC was launched without an accurate laboratory calibration, in-flight calibration 193	

transfer using other well-calibrated satellites was necessary.  There were two suitable 194	

LEO satellites satellite instruments Aura/OMI (Ozone Monitoring Instrument, e.g. Torres 195	

et al., 2007) and Suomi-NPP/OMPS (National Polar-orbiting Partnership / Ozone 196	

Mapping and Profiler Suite, e.g., Li et al., 2017) that contain similar wavelength channels 197	

and are able to observe scenes that closely match in location and angles with those 198	

observed by EPIC.  Of these, the best calibrated was OMPS, which has an albedo 199	

accuracy of 2% and a wavelength accuracy of better than 1% (Jaross et al., 2014).   200	

 201	

Reflectance calibration was chosen, since the ratio of reflected radiance to the incoming 202	

solar flux mostly cancels the strong Fraunhofer line structure.  The lack of line structure 203	

permits accurate interpolation needed to match the wavelength bands of EPIC.  EPIC 204	

measures raw counts per second (C/S) based on permanently fixed exposure times 205	

designed to fill the CCD wells to approximately 80% for the brightest scenes in each of 206	

all 10 channels.  Comparison with identical OMPS scenes produces EPIC multiplicative 207	

albedo calibration coefficients Kλ (Table 1) to convert C/S into top of the atmosphere 208	

reflectance πIλ/Sλ.  Here, Iλ is the radiance measured by OMPS at the top of the 209	

atmosphere and Sλ is the wavelength dependent solar flux corrected for the sun-earth 210	

distance.  For the UV channels, there is a small secular change of a few percent per year.  211	

A more complete discussion is given in Herman et al. (2018). 212	
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 213	

2.4 Calibration of EPIC visible and near-IR channels 214	

We used MODIS Aqua and Terra L1B 1-km bands 3 (central wavelength is 469 nm), 4 215	

(555 nm), 1 (645 nm) and 2 (858.5 nm) reflectance values to infer calibration factors for 216	

four EPIC visible and near-IR channels: 443, 551, 680 and 780 nm, respectively.  For 217	

each EPIC pixel we identified favorable MODIS pixels as follows: (i) spatially collocated 218	

within 25 km; (ii) temporally collocated within 10 min; and finally, (iii) having the same 219	

scattering angles within 0.5O.   220	

 221	

We selected EPIC pixels that had at least 40 MODIS pixels within 25 km radius.  222	

Relative standard deviation was then calculated for the matching MODIS and EPIC 223	

pixels.  In the latter case, a 5x5 pixel neighborhood was used to calculate the standard 224	

deviation.  The value of the relative standard deviation was used to select the most 225	

homogeneous scenes.	 Two methods were used to determine the calibration coefficients 226	

from the most homogeneous scenes: first, linear regression between EPIC counts and 227	

MODIS reflectance values and second, mean MODIS/EPIC ratio for high MODIS 228	

reflectance (> 0.6) and small relative standard deviation (< 0.1).  	229	

 230	

The differences in the position and spectral width of the corresponding EPIC and MODIS 231	

channels may result in discrepancies when scenes with different spectral signatures are 232	

observed by the two instruments.  To compensate, we employ spectral band adjustment 233	

factors (SBAFs) which convert MODIS reflectance values to equivalent EPIC 234	

reflectances for various surface types.  These factors, in the form of linear regression 235	
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coefficients, were obtained from http://www-angler.larc.nasa.gov/SBAF, and are based 236	

on the analysis of SCHIAMACHY hyperspectral data (Scarino et al., 2016).  To identify 237	

the land cover type for each matching EPIC pixel we use a data set developed by 238	

Channan et al (2014).  The land cover type was identified based on a 0.5x0.5 degree 239	

re-projected version of the Global Mosaics of the standard MODIS land cover type data 240	

product (MCD12Q1) in the IGBP Land Cover Type Classification.  Separate adjustment 241	

factors were used for MODIS Aqua and MODIS Terra data (Geogdzhayev and Marshak, 242	

2018).  243	

 244	

At the time of this writing, no degradation in the EPIC visible and near-IR bands has 245	

been detected, while the UV channels have a very small secular change (Herman et al., 246	

2018).  The calibration factors Kλ for these channels are given in Table 2. 247	

 248	

2.5 Calibration of the EPIC O2 absorbing bands using Lunar observations  249	

To calibrate the EPIC O2 absorbing bands, we used EPIC lunar observations at the time 250	

of the Full Moon as seen from the earth.  Lunar reflectance Rλ does not increase much 251	

with a small wavelength change Δλ;  a 10 nm difference in λ leads to a difference in Rλ in 252	

the range of 0.0006-0.0013 or 0.8-1.2% (e.g., Ohtake et al., 2010, 2013).  It follows from 253	

this that the difference in moon reflectance between the O2 B-band (688 nm) and the ‘red’ 254	

(680 nm) channels as well as between the O2 A-band (764 nm) and the near-IR (780 nm) 255	

channels will be within 1.5%. 256	

 257	

Since the calibration factors, Kλ, for λ=680 and 780 nm are assumed to be known from 258	
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in-flight comparisons between EPIC Earth observations and well-calibrated measured 259	

Earth reflectances obtained from the Terra and Aqua MODIS LEO satellite observations  260	

(see Section 2.4), we can obtain the calibration factors for the O2 absorbing channels at 261	

688 and 764 nm.  Indeed, the ratio F(λ1,λ2) of the lunar reflectance values measured in 262	

counts/sec at two neighboring channels λ1 and λ2 is very stable (Fig. 4).  Thus, the 263	

calibration factor Kλ for λ=688 nm, can be approximated as 264	

 265	

K688 = R688/R688
counts = R688/[R680

counts F(680,688)] = 266	

              = [R688/R680] K680/F(680,688) ≈ K680/F(680,688). 267	

 268	

Similarly to 688 nm, the calibration factor for 764 nm can be estimated as 269	

 270	

K764 ≈ K780/F(780,764). 271	

 272	

Here, Rλ and Rλcounts are the values of calibrated reflectance and measured C/S at 273	

wavelength λ, respectively; Kλ is the multiplicative calibration coefficient expressed as a 274	

conversion from counts/second to reflectance at wavelength λ and the ratio F(λ1,λ2) = 275	

Rλ2counts/Rλ1counts.  The calibration factors Kλ for these channels are given in Table 3.   276	

 277	

The calibration factors for all 10 EPIC channels are also publicly available at 278	

https://eosweb.larc.nasa.gov/project/dscovr/DSCOVR_EPIC_Calibration_Factors_V02.p279	

df. 280	

 281	

3. Products 282	
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3.1 EPIC ozone and Lambert Equivalent Reflectivity retrievals 283	

Applying the OMPS derived calibration to EPIC’s C/S to obtain earth albedos for each of 284	

the UV channels, the reflectances can be used to retrieve total column ozone (TCO), 285	

Lambert equivalent reflectivity (LER), aerosol optical depth and absorption, aerosol 286	

index (AI), and UV reflectance at the Earth’s surface (Herman et al., 2018).  Ozone 287	

retrieval requires the use of measured laboratory high spectral resolution absorption 288	

coefficients (Brion et al. (1993, 1998); Daumont et al. (1992); and Malicet et al. (1995)).  289	

The EPIC measured reflectance spectra are compared with a set of radiative transfer 290	

derived lookup tables for the EPIC filter transmission functions and for a wide range of 291	

ozone values.  LER, AI, and ozone are retrieved simultaneously with a maximum 292	

resolution of 18 km at the sub-satellite point.  A matched pair of ozone and LER images 293	

are shown in Fig. 5 for August 21, 2016 at 16:58 UT. 294	

 295	

EPIC ozone has been compared to ozone retrieved from a Pandora Spectrometer 296	

Instrument (PSI) located in Boulder Colorado (Herman et al., 2015) matched in location 297	

and time (UTC) several times per day.  The average agreement is 2.1 ± 5.4% (Fig. 6).  An 298	

additional comparison (Fig. 7) has been made (Herman et al., 2018) with the assimilated 299	

ozone product from the Modern-Era Retrospective Analysis for Research and 300	

Applications, version 2 (MERRA-2) based on Microwave Limb Sounder (MLS) and total 301	

column ozone from the Ozone Monitoring Instrument (OMI).  All of the structures in the 302	

EPIC ozone retrieval are present in the MERRA-2 assimilation model ozone, but with an 303	

average offset of about 3% (10 DU).  Comparisons with MERRA-2 have been made 304	

using ozone data from other satellites (Wargan et al., 2017) that have similar offsets. 305	
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 306	

3.2 EPIC SO2 retrievals for volcanic eruptions 307	

Volcanic emissions of sulfur dioxide (SO2) and ash have been measured by ultraviolet 308	

(UV) sensors on US and European polar-orbiting satellites since the late 1970s (Bluth et 309	

al., 1993; 1997; Carn et al., 2003; 2015; 2016; Carn and Krotkov, 2016; Guo et al., 2004; 310	

Krotkov et al., 1999a,b; Krueger 1983; 1995; 2000; Li et al., 2017; Pavolonis et al., 2013; 311	

Prata, 1989; Prata and Prata, 2014; Prata and Kerkmann, 2007; Prata et al., 2003; 2015; 312	

Realmuto 2000; Wen and Rose 1994).  These observations permit detection of hazardous 313	

volcanic clouds in support of aviation safety management; however, they are generally 314	

available only once a day from LEO satellites with a delay at least 2-3 hours.  More 315	

frequent observations can be crucial in providing timely warnings to mitigate threats to 316	

aviation safety.  Current geostationary thermal infrared (TIR) imagers including 317	

MSG/SEVIRI, GOES-16/ABI and Himawari-8/AHI can detect and image volcanic SO2 318	

and ash plumes, taking advantage of high frequency observations and low latency to 319	

provide timely warnings to the public, and aviation authorities and operators (Prata 1989; 320	

Realmuto et al., 2000; Ackerman et al., 2008; Pavolonis et al., 2013).  DSCOVR/EPIC 321	

provides the first opportunity to observe transient volcanic clouds globally from the L1 322	

Lagrange point.  The unique L1 vantage point offers the potential for multiple daily UV 323	

observations of drifting volcanic SO2 and ash clouds globally using a single instrument. 324	

 325	

The EPIC volcanic SO2 algorithm is a modified version of the heritage Total Ozone 326	

Mapping Spectrometer (TOMS) 4-band algorithm, adapted to the EPIC wavelengths.  327	

The algorithm uses all four EPIC UV channels (317, 325, 340, 388 nm) to retrieve (i) 328	
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vertical column amounts of SO2 and (ii) O3, (iii) the Lambertian equivalent reflectivity 329	

(LER) at 388 nm, and (iv) its spectral dependence.   The algorithm relies on spectral 330	

differences in the SO2 and O3 absorption cross sections to simultaneously quantify 331	

column amounts of the two gases.  SO2 is more absorbing than O3 at the shortest UV 332	

channel (317 nm), whereas O3 is more absorbing than SO2 at the longer channel (325 nm).  333	

The retrieval is performed iteratively for each EPIC pixel.  It starts with the 334	

climatological value of O3 and zero SO2 and first computes LER at 388 nm.  Because the 335	

O3 and SO2 absorption are very weak at 388 nm, LER remains fixed during the iterations.   336	

The iterations start with climatological values of O3 and zero SO2.  The algorithm then 337	

retrieves adjustments to the initial guess by matching measured and calculated sun-338	

normalized backscattered UV (BUV) radiances in the shorter-wavelength spectral 339	

channels (317, 325 and 340 nm).  The sensitivities (Jacobians) associated with linear 340	

perturbations in SO2, O3 and LER are computed for each UV spectral band using pre-341	

computed backscattered UV radiances look-up tables that are numerically interpolated to 342	

the EPIC viewing geometry at each iteration.  This algorithm appears to have adequate 343	

sensitivity to detect moderate to large volcanic eruptions from L1 at solar and view zenith 344	

angles less than ~70o (e.g., Fig. 8). 345	

 346	

To increase sensitivity to small eruptions, a simplified version of the SO2 algorithm has 347	

also been developed.  It uses the 317 and 388 nm EPIC channels and an a-priori estimate 348	

of total ozone.  The ozone is re-gridded and smoothed, which reduces channel–to-channel 349	

co-location errors.  The radiances are normalized accounting for smooth ozone variations, 350	
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but excluding pixels with elevated SO2.  This error mitigation results in enhanced 351	

sensitivity to small volcanic SO2 clouds. 352	

  353	

No large tropical eruptions have occurred during the DSCOVR/EPIC mission to date (as 354	

of January 2018).   However, the sensitivity of EPIC UV radiances to volcanic clouds has 355	

been demonstrated by the detection of several mid- to high-latitude eruptions in 2015-356	

2017.  Figure 8 shows EPIC SO2 retrievals for the high-latitude eruption of Pavlof 357	

(Alaska, USA) in March 2016.  Comparison with the low-Earth orbiting Suomi NPP-358	

OMPS SO2 data (Fig. 8c) collected at a similar time shows that EPIC clearly detects the 359	

proximal volcanic plume where SO2 columns were highest (>10 Dobson Units: 1DU = 360	

2.69x1016 molecules SO2 cm-2), along with some of the distal plume.  Note, that the EPIC 361	

viewing conditions were not ideal for this eruption, with a relatively high solar zenith 362	

angle in Alaska in March, but nevertheless the SO2 cloud was detected in at least 2 EPIC 363	

exposures over approximately a 2-hour period on March 28-29 (Fig. 8 a,b), with the first 364	

observation ~90 minutes prior to the SNPP-OMPS overpass.  The atmospheric infrared 365	

sounder (AIRS) on NASA Aqua satellite also detected the Pavlof SO2 emissions and a 366	

coincident AIRS retrieval on ~23:30 UTC on March 28, using the method of Prata and 367	

Bernardo (2007), is shown in Fig. 8d.  The total SO2 mass of 33 kilotons (kT) measured 368	

by AIRS compares favorably with the EPIC retrievals, which detected ~25 kT of SO2. 369	

 370	

These EPIC exposures provide unique observations of SO2 cloud transport and have great 371	

potential to provide new insight into the evolution of volcanic SO2 emissions, as well as 372	

more timely detection and tracking of potentially hazardous volcanic clouds.  Forecasting 373	
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the dispersion of volcanic clouds requires an estimate of the volcanic cloud altitude.  The 374	

combination of total column SO2 observations from polar orbiting satellites with 375	

trajectory analysis methods has proved useful for estimating volcanic cloud altitudes 376	

(Eckhardt et al., 2008; Krotkov et al., 2010; Hughes et al., 2012).  Such techniques would 377	

be improved by assimilating more frequent observations of volcanic SO2 from EPIC, 378	

enabling more rapid estimation of volcanic cloud altitude.  379	

 380	
 381	

3.3 EPIC UV Aerosol Products 382	

A variety of aerosol and aerosol-related products are derived from EPIC’s observations.  383	

EPIC extends the multi-decadal long UV Aerosol Index (UVAI) record started in 1979 384	

with TOMS (Herman et al., 1997; Torres et al., 1998) and currently available from OMI 385	

observations (Torres et al., 2007).  The EPIC UVAI detects carbonaceous aerosols, desert 386	

dust particles, and volcanic ash over the oceans and the continents under both clear and 387	

partly cloudy conditions, as well as over extremely bright backgrounds such as snow/ice 388	

surfaces and cloud decks.  In addition to the qualitative UVAI product, EPIC 389	

observations yield aerosol optical depth (AOD) in the UV-VIS range, and near-UV single 390	

scattering albedo for both absorbing and non-absorbing aerosol types under cloud-free 391	

conditions using a modified version of the OMI aerosol algorithm (Torres et al., 2007; 392	

Torres et al., 2013).  Because of the sensor’s coarse spatial resolution, sub-pixel cloud 393	

contamination affects both the frequency of retrievals and the quality of the retrieved 394	

aerosol parameters.  Figure 9 shows retrievals of UVAI, aerosol optical depth, single 395	

scattering albedo and absorption optical depth associated with smoke and desert dust 396	

events in Africa. 397	
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	398	

Recently developed retrieval approaches are applied to EPIC observations to obtain the 399	

optical depth of aerosol layers above clouds, as well as the cloud optical depth unaffected 400	

by aerosol absorption effects (Torres et al., 2012; Jethva et al., 2013).  Additionally, 401	

radiance measurements in the oxygen A- and B-bands are used to simultaneously derive 402	

the optical depth and the height of elevated desert dust and smoke aerosol layers over the 403	

oceans (Xu, et al., 2017).  404	

	405	

3.4 Atmospheric Correction Suite 406	

DSCOVR-EPIC is contributing to the Surface Reflectance Earth System Data Record.  407	

The shortcoming of EPIC’s rather coarse spatial resolution is compensated by its high 408	

(almost hourly) observation rate, which produces up to 8-12 images of the same area 409	

from dawn to dusk, globally.  This provides early morning observations, which are 410	

unavailable from MODIS or VIIRS, for climatically important tropical regions of the 411	

world such as Amazonia where tropical convection generates more clouds in the 412	

afternoon.  A comparison of statistics between MODIS Terra and Aqua shows about 10% 413	

more clouds from MODIS Aqua with equatorial overpass time 13:30 as compared to 414	

MODIS Terra crossing equator at 10:30 (Hilker et al., 2015). 415	

 416	

The surface products include spectral bidirectional reflectance factors (BRF, or surface 417	

reflectance) and bidirectional reflectance distribution function (BRDF) represented by 3 418	

parameters of the Ross-Thick Li-Sparse (Lucht et al., 2000) (RTLS) model.  The suite 419	
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also includes cloud mask and aerosol optical thickness required for atmospheric 420	

correction.  421	

 422	

The unique backscattering observation geometry of EPIC will allow us to revisit models 423	

of BRDF near the hot-spot direction (scattering angle close to 180 degrees).  So far, only 424	

a limited analysis has been conducted based on POLDER multi-angle observations (e.g., 425	

Breon et al., 2002).  Such models have a high importance for vegetation monitoring in 426	

tropics when geometric variation from shifting azimuthal plane overlays seasonal 427	

vegetation cycle (e.g., Bi et al., 2016).  428	

 429	

Because EPIC differs significantly from MODIS or VIIRS in spectral bands and spatial 430	

and temporal resolution, a new processing algorithm is being developed based on 431	

elements of NASA Multi-Angle Implementation of Atmospheric Correction (MAIAC) 432	

algorithm originally developed for MODIS (Lyapustin et al., 2011, 2012).  The main idea 433	

of MAIAC is to take advantage of differences in the space-time variability of atmosphere 434	

(aerosols and clouds) and surface to separate their contributions in measured radiance.  435	

Such an approach requires observing the same area over time, therefore EPIC processing 436	

starts with gridding observations to a 10 km regular sinusoidal grid.  Continuous 437	

observations of the same grid cell over time yield multi-angle coverage for spectral 438	

BRDF retrievals, which then helps cloud detection and aerosol retrievals.  MAIAC also 439	

characterizes spatial variability between adjacent grid cells under clear skies that helps 440	

cloud detection.  441	

 442	
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The EPIC MAIAC cloud detection employs a set of tests including absolute brightness 443	

test, spatial variability test, oxygen A, B-band test for cirrus detection, and “deviation 444	

from expected” test based on our knowledge of spectral surface BRDF which is 445	

translated to an expected top-of-atmosphere (TOA) reflectance.  An additional filtering 446	

takes place during aerosol retrievals and atmospheric correction, which significantly 447	

increases overall data quality.  448	

 449	

Aerosol retrieval is based on characterization of the surface spectral reflectance ratios 450	

from the time series of EPIC observations using the minimum reflectance method (e.g., 451	

Knapp, 2002).  Following aerosol retrievals, the atmospheric correction stage includes 452	

BRDF retrieval and computation of surface reflectance (BRF).  The BRDF retrieval uses 453	

linear inversion to derive three parameters of the RTLS BRDF model from the multi-454	

angle EPIC dataset accumulated from 2-3 days of observations over each 10 km grid cell.  455	

A preliminary example of AC processing is shown in Fig. 10.  It includes the RGB TOA 456	

EPIC image for 27 March 2016 at 1312 UTC  (left), the atmospherically corrected land 457	

surface RGB image (middle), and retrieved aerosol optical thickness (AOT0.44) both over 458	

land and ocean on the right. 459	

	460	

3.5 EPIC Cloud Product 461	

Over the years, cloud products from low Earth orbit (LEO) satellites, such as Terra, Aqua 462	

and the NOAA satellites (e.g., Parkinson 2003; Platnick et al. 2003; Heidinger et al. 463	

2009) and from geostationary Earth orbit (GEO) satellites, such as GOES (e.g., Schmit et 464	

al., 2008, 2017), constitute the main global cloud property database.  With the launch of 465	
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DSCOVR, the EPIC instrument provides new opportunities for cloud related studies, 466	

since it covers almost the entire sunlit half of the Earth.  Consecutive observations during 467	

the day make studying the cloud diurnal cycle on a global scale possible.  EPIC cloud 468	

products also provide a spatial context for the observations from LEO satellites, because 469	

for every LEO observation at daytime, there are always closely collocated EPIC 470	

observations.  The half-globe synoptic snapshot feature of EPIC makes comparison 471	

between synoptic GCM model outputs and observations intuitive (Holdaway and Yang, 472	

2016a,b) and helps model validations.   473	

 474	

The EPIC Level 2 cloud products include Cloud Mask (CM), Cloud Effective Pressure 475	

(CEP), Cloud Effective Height (CEH), and Cloud Optical Thickness (COT).  All the 476	

products are provided at the EPIC original temporal and special resolutions.  CEP and 477	

CEH are derived from the oxygen A- and B-bands, respectively.  These data products 478	

provide cloud properties of almost the entire sunlit side of the earth, which are important 479	

for climate studies, cloud and weather system analysis, and earth radiation budget 480	

calculations. 481	

 482	

A suite of algorithms for generating the operational EPIC CM, CEP/CEH and COT 483	

products has been developed (Yang et al., 2013; Meyer et al., 2016).  (1) The EPIC CM is 484	

based on the threshold method; surface is classified into three categories: land, deep 485	

water and snow/ice; for each surface type, two independent tests are applied and the final 486	

CM with confidence level is determined through combining the results from the two tests.  487	

(2) For the CEP/CEH, the Mixed Lambertian-Equivalent Reflectivity (MLER) model 488	
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(e.g., Koelemeijer et al., 2001; Yang et al., 2013) is adopted, which assumes that an EPIC 489	

pixel contains two Lambertian reflectors, the surface and the cloud.  This assumption 490	

simplifies the radiative transfer equation and cloud pressure can be retrieved using the 491	

oxygen A- and B-band pairs.  Since the MLER model does not take into account the 492	

effect of photon penetration into clouds, the retrieved cloud pressure is an effective 493	

pressure.  By incorporating the GEOS-5 forecasted atmospheric profiles, the CEP is 494	

converted to CEH.  (3) The EPIC COT product is produced using the operational MODIS 495	

cloud retrieval infrastructure (Platnick et al., 2003).  The MODIS system provides 496	

simultaneous two-channel retrievals of COT and cloud effective radius (CER), and cloud 497	

phase retrievals using a variety of spectral tests.  However, since EPIC does not have 498	

particle size sensitive channels, a single channel retrieval algorithm was developed 499	

assuming fixed values for CER (Meyer et al., 2016).  In addition, cloud phase 500	

determination capability for EPIC is limited; hence the EPIC COT product provides two 501	

retrievals for each cloudy pixel, one assuming liquid phase and the other ice phase.  A 502	

likely cloud phase is also provided based on the CEH.  An example of EPIC cloud 503	

products is given in Fig. 11.  We note that the relatively big EPIC pixel size (~10 km at 504	

nadir) results in large number of partially cloudy pixels.  This effect is taken into account 505	

in the CEP retrieval as the MLER model derives the effective cloud fraction first (Yang 506	

et al., 2013).  For COT retrievals, coarser spatial resolution results in a smoother retrieval 507	

field compared to the fine resolution MODIS retrievals (Meyer et al., 2016).   508	

	509	

3.6 EPIC Vegetation Product 510	
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The DSCOVR EPIC science product suite includes Vegetation Earth System Data 511	

Record (VESDR) that provides Leaf Area Index (LAI) and diurnal courses of Normalized 512	

Difference Vegetation Index (NDVI), Sunlit Leaf Area Index (SLAI) and Fraction of 513	

incident Photosynthetically Active Radiation (FPAR) absorbed by the vegetation (Yang 514	

et al., 2017).  The product at 10 km sinusoidal grid and 65 to 110 minute temporal 515	

frequency is generated from the upstream EPIC BRF product (Sect. 3.4).  Whereas LAI is 516	

a standard product of many satellite missions, global diurnal courses of FPAR, NDVI and 517	

SLAI are new satellite derived products (Fig. 12).  Sunlit and shaded leaves exhibit 518	

different radiative response to incident Photosynthetically Active Radiation (400-700 nm) 519	

(Mercado et al., 2009; Stenberg, 1998), which in turn triggers various physiological and 520	

physical processes required for the functioning of plants.  Leaf area and its sunlit portion 521	

are key state parameters in most ecosystem productivity models (Bonan et al., 2003; 522	

Chen et al., 2012; Dai et al., 2004; He et al., 2013; Mercado et al., 2009; Norman, 1982) 523	

and carbon/nitrogen cycle (Chen et al., 2003; Doughty and Goulden, 2008; Wang et al., 524	

2001).  525	

 526	

Theoretical basis of the operational algorithm is documented in (Yang et al., 2017) and 527	

summarized as follows.  The Look-up-Table (LUT) approach implemented in the 528	

MODIS operational LAI/FPAR algorithm is adopted.  The LUT has been significantly 529	

modified.  First, its parameterization incorporates the canopy hot spot phenomenon (Fig. 530	

13) and recent advances in the theory of canopy spectral invariants.  This allows more 531	

accurate decoupling of the structural and radiometric components of the measured 532	

Bidirectional Reflectance Factor (BRF), improves scaling properties of the LUT and 533	



	 24	

consequently simplifies adjustments of the algorithm for data spatial resolution and 534	

spectral band compositions.  Second, the stochastic radiative transfer equations are used 535	

to generate the LUT for all biome types. The equations naturally account for radiative 536	

effects of the three-dimensional canopy structure on the BRF and allow for an accurate 537	

discrimination between sunlit and shaded leaf areas.  Third, the LUT entries are 538	

measurable, i.e., they can be independently derived from both below canopy 539	

measurements of the transmitted and above canopy measurements of reflected radiation 540	

fields.  This feature makes possible direct validation of the LUT, facilitates identification 541	

of its deficiencies and development of refinements.  542	

	543	

The BRF of the vegetation reaches its maximum in the backscattering directions (Fig. 13). 544	

This is the so-called hot spot effect: i.e. a sharp increase in canopy reflected radiation 545	

when scattering direction approaches the direction to the sun (Kuusk, 1991; Nilson, 1991; 546	

Qin et al., 1996; Ross and Marshak, 1988).  The EPIC sensor therefore sees the brightest 547	

portion of the canopy reflected radiation.  This feature allows us not only to directly 548	

obtain sunlit leaf area but also estimate how individual leaves reflect solar radiation, 549	

which is unique diagnostic information about leaf biochemical constituents (NRC, 2007, 550	

Ustin, 2013).  Leaf optical properties can be described by the scattering coefficient, 551	

which is the fraction of the canopy intercepted radiation that has been reflected from, or 552	

diffusely transmitted through, the canopy (Knyazikhin et al., 2013).  Figure 14 shows a 553	

false color image (688-551-680) of the scattering coefficient derived from DSCOVR 554	

EPIC images (Marshak and Knyazikhin, 2017).  The radiation scattered by the vegetation 555	
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in backscattering directions is very strong, allowing the EPIC to see green leaves even 556	

through optically thin-clouds.  557	

	558	

4. Expected and Unexpected Capabilities 559	

4.1. Use of the oxygen B-band for monitoring vegetation 560	

The EPIC Normalized Difference Vegetation Index (NDVI), defined (Tucker, 1979) as 561	

the ratio between the difference and the sum of the NIR (780 nm) and the red (680 nm) 562	

channels, is used to monitor vegetation dynamics.  A useful estimate of vegetation 563	

density requires an accurate atmospheric correction.  However, it was recently shown 564	

(Marshak and Knyazikhin, 2017) that if the EPIC O2 B-band (688 nm) is used instead of 565	

the conventional red band 680 nm), the effect of the atmosphere (diffuse radiation) on 566	

remote sensing of surface reflectance is reduced and the residual uncertainties in 567	

atmospheric correction can be better tolerated.  This is due to two factors: (i) the 568	

vegetated surface is sufficiently dark at 688 nm, and (ii) the O2 absorbing atmosphere 569	

substantially reduces multiple scattering.  Note that also at the slightly longer wavelength 570	

of 688 nm, there is less Rayleigh and aerosol scattering. 571	

 572	

To support this statement, the spectral invariant approximation to the bidirectional 573	

reflection factor (BRF) of vegetated surface (Knyazikhin et al., 2011; Stenberg et al., 574	

2016; Yang et al., 2017) was used.  It was shown that the retrieval of a spectrally 575	

invariant coefficient (Marshak and Knyazikhin, 2017) determined by purely canopy 576	

structure is only weakly sensitive to the uncertainties in the spectral properties of the 577	

atmospheric optical depth above the canopy.  On the other hand, the spectral scattering 578	
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coefficients at the EPIC green to NIR spectral bands are fully determined by the 579	

chlorophyll absorption spectrum and can be estimated from the TOA BRF and the 580	

approximated spectrally invariant coefficient (Fig. 14).  It was demonstrated (Marshak 581	

and Knyazikhin, 2017) that the approximated values of spectral scattering coefficient 582	

at 551, 688 and 780 nm fit well the spectral shape of the ‘true’ scattering coefficient over 583	

vegetated land for all atmospheric conditions observed.  The spectral signature of the 584	

chlorophyll absorption at these wavelengths is unique to green leaves.  Consequently, the 585	

spectral scattering coefficient of the vegetated surface differs significantly from any one 586	

of other types of reflecting media, as illustrated in Fig. 14. 587	

 588	

Figure 15 illustrates with two NDVIs with 780&680 (middle panel) and 780&688 (right 589	

panel) over Africa that the 780&688 NDVI better identifies patterns of dense vegetation 590	

compared to the 780&680 NDVI.  This is because without an accurate atmospheric 591	

correction the 780&688 NDVI is more sensitive to the presence of the chlorophyll than 592	

the standard 780&680 one.  593	

	594	

4.2 Detection of oriented ice crystals from 1.5 million km away 595	

Many DSCOVR/EPIC images contain unexpected bright flashes of light over land, not 596	

usually seen by other satellites.  Figure 16 provides an example of such flashes.  Here we 597	

focus on flashes only over land so as not to be confused with glints over ocean water. 598	

Marshak et al. (2017) constructed a yearlong time series of flash latitudes, scattering 599	

angles and oxygen absorption to demonstrate conclusively that the flashes over land are 600	

specular reflections off tiny ice platelets, floating in air nearly horizontally.   601	
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 602	

The time series of latitudes of the detected flashes corresponds to a set of latitudes that 603	

permit specular reflection for a given time of year.  As the Earth’s axial tilt (23.4o) causes 604	

local zenith directions to vary, the glints reach their southernmost of ~25° S around 605	

December 22 and their northernmost latitude of ~25° N around June 22.  The detected 606	

glints are near the equator around the equinoxes in March and September.  The almost 607	

complete coincidence of the measured latitudes with the theoretical curve constituted 608	

compelling evidence for the ice crystal specular reflection hypothesis. 609	

 610	

In addition, using EPIC measurements of absorption by molecular oxygen (O2) via the 611	

ratio of absorbing channel to adjacent non-absorbing channel reflectances, cloud height 612	

was estimated for all detected flashes.  Compared with radiative transfer simulations of 613	

EPIC O2 A- and B-band ratios, it was shown that that the glints occur within medium-614	

high clouds that are most likely to contain horizontally oriented ice platelets. 615	

 616	

While we are not aware of any deep space or geostationary observations (36000 km) 617	

observations of glint off tropospheric ice clouds reported in the literature, atmospheric 618	

observations of such specular ice reflections have been made with ground-based lidars 619	

(Sassen and Benson, 2001) and by satellites on low-Earth orbit: POLDER (Polarization 620	

and Directionality of the Earth's Reflectances) polarized measurements (Chepfer et al., 621	

1999; Breon and Dubrulle, 2004; Noel and Chepfer, 2004), and CALIPSO (Cloud-622	

Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar returns (Noel and 623	



	 28	

Chepfer, 2010).   All such cloud glint observations are bounded by an altitude of about 624	

700 km and have broader angular resolution than EPIC.   625	

 626	

Based on in-situ measurements of cirrus clouds (e.g., Korolev et al., 2000), tiny 627	

hexagonal platelets of ice, floating in air in nearly perfect horizontal alignment are likely 628	

responsible for the glints observed by EPIC over land.  Cirrus clouds permanently cover 629	

more than 30% of the Earth surface and play a major role in the Earth’s radiation budget 630	

(Stephens et al., 1990).  Most of these clouds are composed of nonspherical ice crystals.  631	

The orientation of these crystals is difficult to detect; however, oriented particles create a 632	

very strong specular reflection (Yang et al., 2003) and, if their concentration is large 633	

enough, it can substantially increase cloud albedo compared to randomly oriented crystals.  634	

	635	

4.3 EPIC Erythemal Irradiance  636	

Synoptic ozone and cloud reflectivity and cloud transmission have been determined for 637	

most days during the current operating lifetime of DSCOVR.  These may be used to 638	

estimate the erythemal irradiance at the earth’s surface as a function of latitude, longitude 639	

(time of day), and altitude (Herman et al., 2018).  The method is based on previous 640	

calculations (Herman, 2010) applied to polar orbiting satellites that measured ozone and 641	

reflectivity at 13:30 local time and then assumed that the same values applied to noon.  642	

The noon assumption can be applied to slowly varying ozone, but is not accurate for 643	

estimating the effects of cloud transmission T from rapidly varying cloud cover.   This is 644	

especially true for local times other than noon.  The calculation method outlined here for 645	

erythemal irradiance can be easily extended to other processes dependent on a 646	
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wavelength dependent action spectrum (Herman, 2010).  Using the spectrally weighted 647	

erythemal Action spectrum AERY(λ), the erythemal irradiance is derived from an integral 648	

over UV wavelengths λ, 649	

 

 

 

250 < λ < 298 nm log10(AERY) = 0  

298 < λ < 328 nm log10(AERY) = 0.094 (298 - λ)  

328 < λ < 400 nm log10(AERY) = 0.015 (139 - λ)  

E0(θ,Ω,T) is the erythemal irradiance at sea level from a radiative transfer calculation 650	

(Herman, 2010).  The erythemal weighting function log10(AERY(λ)) is given by the 651	

standard fitting function (McKinley and Diffey, 1987).  At altitude z, the calculation of 652	

erythemal irradiance E(θ,Ω,z,T) (W/m2) is defined in terms of the product E0(θ,Ω,T) x 653	

H(θ,Ω,z), where H(θ,Ω,z) = 1+f(θ,Ω,z).  Here f is the fractional increase of E0 as a 654	

function of altitude for specified solar zenith angle θ and ozone amount Ω.  The details 655	

and computational method are described in Herman (2010) and with extensions for 656	

H(θ,Ω,z) in Herman et al. (2018). 657	

 658	

An example of E(θ,Ω,z,T) is shown in Fig. 17a for April 1, 2016 at 17:16 UTC.  Local 659	

noon is near the center of the image with sunrise to the left (west) and sunset to the right 660	

(east).  For this date, the sun is overhead just north of the equator producing very high 661	

values of erythemal irradiance E(θ,Ω,z,T) corresponding to a UV index, UVI, of 13 at sea 662	

level in the Pacific Ocean (UVI = 40 E(θ,Ω,z,T)).  Higher values (UVI=16) are seen in 663	

the Sierra Nevada Mountains in Mexico near 20oN.  This particular day has some small 664	



	 30	

clouds over most of South America except for thick clouds over eastern Argentina.  For 665	

the erythemal irradiance, the presence of clouds reduces the amount of UV reaching the 666	

ground (blue color with a UV index of less than 4). 667	

 668	

The increase with altitude is much more pronounced during the summer months over the 669	

Andes Mountains reaching above 4 km (over 13,000 feet).  Figure 17b shows the large 670	

increases with altitude over the Andes Mountains for November 27, 2016, with the sun 671	

nearly overhead at 20oS latitude.  Here the UV index ranges from 16 to 18, which agrees 672	

with previous ground-based measurements in this region (Cede et al., 2002).  In the 673	

completely clear regions of the Andes Mountains the UV index is even higher than 18.  674	

	675	

5.  Summary 676	

DSCOVR was launched on February 11, 2015 into a L1 orbit, about 1.5 million 677	

kilometers from Earth towards the Sun to provide continuous solar wind measurements 678	

and to observe the sunlit disk of Earth from a new and unique vantage point.  The 679	

observation of the rotating sunlit face of the Earth is done by the DSCOVR/EPIC 680	

instrument, a 10-filter spectroradiometer (317.5 to 780 nm) with a maximum resolution 681	

of 10x10 km2 for 443 nm at the sub-satellite point; the other 9 reduced resolution 682	

channels have 18x18 km2 resolution.  The main difference with Low Earth Orbit satellites 683	

(LEO) is that EPIC observes the full sunlit face of the Earth from sunrise to sunset at near 684	

backscattering directions (the scattering angle is between 168.5o and 175.5o).  The 685	

frequency of EPIC observations is 68 to 110 minutes depending on the season (more 686	

frequently in summer, from mid-April to mid-October).    687	
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 688	

The EPIC in-flight calibration is done by comparison with well-calibrated LEO satellites: 689	

Aura/OMI, Suomi-NPP/OMPS for UV bands, Terra/MODIS and Aqua/MODIS for 690	

visible and near-IR bands.  The calibration of O2 absorbing bands are generated using the 691	

calibrated neighboring channels and EPIC Lunar observations assuming that a 10 nm 692	

difference in wavelength leads to a difference in reflectance of only 1%.  693	

 694	

Calibrated EPIC measurements are used to produce several EPIC products including 695	

ozone, erythemal irradiance, SO2, aerosol, cloud and vegetation properties.   In particular, 696	

total ozone level and SO2 retrievals for volcanic eruptions, UV aerosol index, UV total 697	

and absorption optical depths, UV single scattering albedo, surface spectral reflectance 698	

and aerosol optical depth in visible channels, cloud mask, cloud optical depth and cloud 699	

height, and, finally, vegetation and sunlit leaf area index and fraction of incident 700	

photosynthetically active radiation absorbed by vegetation.  Some of these products are 701	

unique, e.g., the sunlit portion of the leaf area.  As a matter of fact, sunlit and shaded 702	

leaves exhibit different radiative response to incident radiation and sunlit fraction of leaf 703	

area index is the key parameter in ecosystem productivity model.  Other parameters are 704	

also retrieved from LEO measurements, but a unique DSCOVR observational strategy 705	

(backscattering direction and sunrise to sunset observations) leads an innovative 706	

characterization of many of retrieved parameters.  707	

 708	

There are well-expected and completely unexpected discoveries made from EPIC 709	

observations.  For example, since oxygen absorption in the B-band reduces the 710	
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contribution of multiple scattering (and diffuse radiation), we were able to use O2 B-band 711	

(688 nm) to monitor vegetation instead of a red (680 nm) channel without requiring an 712	

atmospheric correction.  We were able to explain the bright flashes of light over land seen 713	

in EPIC RGB imagery as specular reflection of tiny ice crystals floating nearly 714	

horizontally (Marshak et al., 2017).  Finally, because of EPIC’s L1 orbit, we were able to 715	

estimate the erythemal irradiance and the daily variation of UV radiances from sunrise to 716	

sunset to measure skin reddening and potential sunburn from sunlight. 717	
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317.5±0.1 1.0 1.216E-04 819.0 

325.0±0.1 1.0 1.111E-04 807.7 

340.0±0.3 2.7 1.975E-05 995.8 

388.0±0.3 2.6 2.685E-05 1003. 

 1032	

Table 1.  Calibration factors (Kλ) and irradiance at 1 AU (Sλ) for four UV channels. 1033	

 1034	

λ (nm) Center FWHM (nm) Kλ 

443.0±1.0 2.6 8.340E-06 

551.0±1.0 3.0 6.660E-06 

680.0±0.2 1.6 9.300E-06 

779.5±0.3 1.8 1.435E-05 

 1035	

Table 2.  Calibration factors for three visible and one near-IR channel. 1036	

 1037	

λ (nm) Center FWHM (nm) Kλ 

687.75±0.2 0.84 2.020E-05 

764.0±0.2 1.02 2.360E-05 

 1038	

Table 3.  Calibration factors for two O2-band channels. 1039	

  1040	
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A list of the complete figure captions 1041	

Figure 1. Sun Earth View (SEV) angle (left axis, red curve) and the distance between DSCOVR and Earth 1042	

(right axis, blue curve) are plotted versus the day since January 1, 2015.  Note that SEV = 180o – scattering 1043	

angle between solar and viewing directions.  (SEV is usually stands for Sun Earth Vehicle where Vehicle 1044	

refers to the Satellite). 1045	

Figure 2.  DSCOVR/EPIC ‘enhanced’ image of Africa (middle) taken on March 22, 2016 at 10:56 UTC. 1046	

Left and right images show MODIS Terra and MODIS Aqua 2330 km wide swaths of the same area taken 1047	

on the same day.  Note that West Africa follows UTC time while East Africa is UTC plus 3 hours.  Terra 1048	

crosses equator at 10:30 am local time so that the western swath of the left image (Terra) resembles cloud 1049	

structure on the left part of the EPIC image.  Since Aqua crosses equator at 13:30 local time, the eastern 1050	

Aqua swath part of the right (Aqua) and middle (EPIC) images are alike.  Also note that the adjacent 1051	

swaths of the MODIS examples are approximately 100 min apart.   1052	

Figure 3. Schematic diagram of the geolocation process in Level 1A algorithm.  1053	

Figure 4.  Moon observations.  Ratios of Moon reflectance F in counts/sec at 688 over 680 nm and at 764 1054	

over 780 nm channels averaged over Moon pixels.  1055	

Figure 5.  EPIC retrieved ozone and LER values for April 21, 2016 at 16:58 UTC.  The ozone scale is from 1056	

100 to 500 DU, and the LER scale is from 0 to 100 percent.  1057	

Figure 6.  Left: EPIC ozone data compare to Pandora retrievals at Boulder Colorado.  Right: daily (grey 1058	

circles) and monthly (solid line) average difference between Pandora and EPIC ozone retrievals. 1059	

Figure 7.  Comparison of EPIC total column ozone with the MERRA-2 assimilation ozone model for April 1060	

17, 2016.  1061	

Figure 8. SO2 maps for the March 2016 eruption of Pavlof volcano (AK, USA; triangle). SO2 in the Pavlof 1062	

volcanic ash cloud was detected in two EPIC exposures at (a) 21:54 UTC on March 28 and (b) 00:08 UTC 1063	

on March 29; (c) Suomi-NPP/OMPS SO2 measurements at ~23:25 UTC on March 28 produced using a 1064	

Principal Component Analysis (PCA) SO2 algorithm assuming a mid-tropospheric (TRM) volcanic plume 1065	
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located at 5-10 km altitude (Li et al., 2017); (d) Aqua/AIRS SO2 measurements at ~23:29-23:35 UTC on 1066	

March 28.  1067	

Figure 9.  EPIC derived UV aerosol index (top left), 388 nm aerosol optical depth (top right), 388 nm 1068	

single scattering albedo (bottom left) and aerosol absorption optical depth (bottom right) derived from 1069	

observations on August 7, 2016, 10:25 UTC.  1070	

Figure 10. An example of EPIC data processing on 27 March 2016 at 1312 UTC: a) EPIC TOA RGB, b) 1071	

atmospherically corrected RGB surface reflectance, 3) aerosol optical depth (AOD).  1072	

Figure 11. Sample EPIC L2 cloud products for the observations at 14:57 UTC on June 23, 2016: (a) EPIC 1073	

RGB image; (b) EPIC cloud mask. 1: high confidence clear, 2: low confidence clear, 3: low confidence 1074	

cloudy, and 4: high confidence cloudy; (c) oxygen A-band cloud effective pressure; (d) cloud optical 1075	

thickness assuming liquid phase; (e) cloud optical thickness assuming ice phase; (f) most likely cloud 1076	

phase.  Other L2 cloud products not shown include oxygen B-band cloud effective pressure, and A- and B-1077	

band cloud effective height.  1078	

Figure 12. NDVI, FPAR and SLAI on Aug-23-2016 at 15:24:58 UTC.  Corresponding EPIC image of the 1079	

sunlit Earth is shown in Fig. 13. 1080	

Figure 13. Left panel: enhanced RGB image of the sunlit face of the Earth 1081	

(http://epic.gsfc.nasa.gov/enhanced) taken on Aug-23-2016 at 15:24:58 UTC. Left panel: NIR BRF of an 1082	

area in Amazonian rain forest shown as red circle derived from MISR data (symbols) and EPIC (white 1083	

square). Horizontal axis shows values of the phase angle, i.e., the angle between directions to the Sun and 1084	

sensor.  1085	

Figure 14. Vegetation dynamics.  False color image (688-551-680) of the scattering coefficient derived 1086	

from DSCOVR EPIC images taken on Feb-11-2016 at 13:22 UTC and Aug-23-2016 at 13:14 UTC using a 1087	

simple algorithm documented in (Marshak & Knyazikhin, 2017).  The green color indicates green leaves 1088	

that EPIC sees through the atmosphere. The images capture changes in savannas from wet (approximately 1089	

June to September) and dry (October to May) seasons when area of green leaves increases during the wet 1090	

season and decreases during the dry season. 1091	
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Figure 15.  MODIS and EPIC NDVIs.  The left panel shows MODIS/Terra surface NDVI composited over 1092	

March, 2016 (https://giovanni.gsfc.nasa.gov/giovanni/).  The middle and the right panels are EPIC NDVIs 1093	

for March 22, 2016 (10:52 UTC) calculated with the red and O2 B-band channels, respectively.  The insert 1094	

in the right panel is the RGB plot.  The use of the O2 B-band enhances the sensitivity of the TOA NDVI to 1095	

the presence of vegetation.  Note that EPIC data do not have any atmospheric correction nor cloud mask.  1096	

Areas with high MODIS NDVI and very small EPIC NDVI are likely covered by clouds.  From Marshak 1097	

and Knyazikhin (2017).   1098	

Figure 16. An example of terrestrial glint. A true-color composite image captured on Oct. 28, 2015 at 9:46 1099	

UTC is shown (all EPIC true-color images are available at http://epic.gsfc.nasa.gov).  The pixel size is 1100	

about 10x10 km2 and angular spread ~3x10-4 degree.  A wheel inside EPIC spins color filters, causing a 1101	

time lag between the component images: ~3 min between blue (443 nm) and green (551 nm), ~4 min 1102	

between blue and red (680 nm), resulting in a coloration effect in the imagery.  The framed region contains 1103	

a bright colorful spot discernible by a naked eye and centered at 8.31° S and 25.5° E (magnified in the 1104	

inset).  1105	

Figure 17. Erythemal irradiance. (a) April 1, 2016 over Central and South America. (b) November 27, 1106	

2016 over South America. 1107	

 1108	

  1109	
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Figures 1110	

 1111	

 1112	

Figure 1. Sun Earth View (SEV) angle (left axis, red curve) and the distance between DSCOVR and Earth 1113	

(right axis, blue curve) are plotted versus the day since January 1, 2015.  Note that SEV = 180o – scattering 1114	

angle between solar and viewing directions.  (SEV is usually stands for Sun Earth Vehicle where Vehicle 1115	

refers to the Satellite). 1116	

	  1117	
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	1118	

	 MODIS	Terra	 	 	 EPIC	10:56	GMT		 	 MODIS	Aqua	 	1119	

10:30	equatorial	crossing	time	 	 	 	 	 13:30	equatorial	crossing	time	1120	

	1121	

Figure 2.  DSCOVR/EPIC ‘enhanced’ image of Africa (middle) taken on March 22, 2016 at 10:56 UTC. 1122	

Left and right images show MODIS Terra and MODIS Aqua 2330 km wide swaths of the same area taken 1123	

on the same day.  Note that West Africa follows UTC time while East Africa is UTC plus 3 hours.  Terra 1124	

crosses equator at 10:30 am local time so that the western swath of the left image (Terra) resembles cloud 1125	

structure on the left part of the EPIC image.  Since Aqua crosses equator at 13:30 local time, the eastern 1126	

Aqua swath part of the right (Aqua) and middle (EPIC) images are alike.  Also note that the adjacent 1127	

swaths of the MODIS examples are approximately 100 min apart.   1128	

  1129	
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 1130	

Figure 3. Schematic diagram of the geolocation process in Level 1A algorithm.  1131	

	 	1132	
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	1133	

Figure 4.  Moon observations.  Ratios of Moon reflectance F in counts/sec at 688 over 680 nm and at 764 1134	

over 780 nm channels averaged over Moon pixels.  1135	

  1136	
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	1137	

Figure 5.  EPIC retrieved ozone and LER values for April 21, 2016 at 16:58 UTC.  The ozone scale is from 1138	

100 to 500 DU, and the LER scale is from 0 to 100 percent.  1139	

  1140	
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	 	1141	

Figure 6. Left: EPIC ozone data compare to Pandora retrievals at Boulder Colorado.  Right: daily (grey 1142	

circles) and monthly (solid line) average difference between Pandora and EPIC ozone retrievals. 1143	

  1144	
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	1145	

Figure 7.  Comparison of EPIC total column ozone with the MERRA-2 assimilation ozone model for April 1146	

17, 2016.  1147	
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1148	
Figure 8. SO2 maps for the March 2016 eruption of Pavlof volcano (AK, USA; triangle). SO2 in the Pavlof 1149	

volcanic ash cloud was detected in two EPIC exposures at (a) 21:54 UTC on March 28 and (b) 00:08 UTC 1150	

on March 29; (c) Suomi-NPP/OMPS SO2 measurements at ~23:25 UTC on March 28 produced using a 1151	

Principal Component Analysis (PCA) SO2 algorithm assuming a mid-tropospheric (TRM) volcanic plume 1152	

located at 5-10 km altitude (Li et al., 2017); (d) Aqua/AIRS SO2 measurements at ~23:29-23:35 UTC on 1153	

March 28.  1154	

	 	1155	
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 1156	

Figure 9.  EPIC derived UV aerosol index (top left), 388 nm aerosol optical depth (top right), 388 nm 1157	

single scattering albedo (bottom left) and aerosol absorption optical depth (bottom right) derived from 1158	

observations on August 7, 2016, 10:25 UTC.  1159	

  1160	
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	1161	

Figure 10. An example of EPIC data processing on 27 March 2016 at 1312 UTC: a) EPIC TOA RGB, b) 1162	

atmospherically corrected RGB surface reflectance, 3) aerosol optical depth (AOD).  1163	

  1164	
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 1165	

Figure 11. Sample EPIC L2 cloud products for the observations at 14:57 UTC on June 23, 2016: (a) EPIC 1166	

RGB image; (b) EPIC cloud mask. 1: high confidence clear, 2: low confidence clear, 3: low confidence 1167	

cloudy, and 4: high confidence cloudy; (c) oxygen A-band cloud effective pressure; (d) cloud optical 1168	

thickness assuming liquid phase; (e) cloud optical thickness assuming ice phase; (f) most likely cloud 1169	

phase.  Other L2 cloud products not shown include oxygen B-band cloud effective pressure, and A- and B-1170	

band cloud effective height.  1171	

	 	1172	
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	1173	

 1174	

Figure 12. NDVI, FPAR and SLAI on Aug-23-2016 at 15:24:58 UTC.  Corresponding EPIC image of the 1175	

sunlit Earth is shown in Fig. 13. 1176	

  1177	
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 1178	

	1179	

Figure 13. Left panel: enhanced RGB image of the sunlit face of the Earth 1180	

(http://epic.gsfc.nasa.gov/enhanced) taken on Aug-23-2016 at 15:24:58 UTC. Left panel: NIR BRF of an 1181	

area in Amazonian rain forest shown as red circle derived from MISR data (symbols) and EPIC (white 1182	

square). Horizontal axis shows values of the phase angle, i.e., the angle between directions to the Sun and 1183	

sensor.  1184	

	 	1185	
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	1186	

Figure 14. Vegetation dynamics.  False color image (688-551-680) of the scattering coefficient derived 1187	

from DSCOVR EPIC images taken on Feb-11-2016 at 13:22 UTC and Aug-23-2016 at 13:14 UTC using a 1188	

simple algorithm documented in (Marshak and Knyazikhin, 2017).  The green color indicates green leaves 1189	

that EPIC sees through the atmosphere. The images capture changes in savannas from wet (approximately 1190	

June to September) and dry (October to May) seasons when area of green leaves increases during the wet 1191	

season and decreases during the dry season. 1192	

	 	1193	
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 1194	

Figure 15.  MODIS and EPIC NDVIs.  The left panel shows MODIS/Terra surface NDVI composited over 1195	

March, 2016 (https://giovanni.gsfc.nasa.gov/giovanni/).  The middle and the right panels are EPIC NDVIs 1196	

for March 22, 2016 (10:52 UTC) calculated with the red and O2 B-band channels, respectively.  The insert 1197	

in the right panel is the RGB plot.  The use of the O2 B-band enhances the sensitivity of the TOA NDVI to 1198	

the presence of vegetation.  Note that EPIC data do not have any atmospheric correction nor cloud mask.  1199	

Areas with high MODIS NDVI and very small EPIC NDVI are likely covered by clouds.  From Marshak 1200	

and Knyazikhin (2017).   1201	

	 	1202	
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 1203	

Figure 16. An example of terrestrial glint. A true-color composite image captured on Oct. 28, 2015 at 9:46 1204	

UTC is shown (all EPIC true-color images are available at http://epic.gsfc.nasa.gov).  The pixel size is 1205	

about 10x10 km2 and angular spread ~3x10-4 degree.  A wheel inside EPIC spins color filters, causing a 1206	

time lag between the component images: ~3 min between blue (443 nm) and green (551 nm), ~4 min 1207	

between blue and red (680 nm), resulting in a coloration effect in the imagery.  The framed region contains 1208	

a bright colorful spot discernible by a naked eye and centered at 8.31° S and 25.5° E (magnified in the 1209	

inset).  1210	

	 	1211	
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 1212	

Figure 17. Erythemal irradiance. (a) April 1, 2016 over Central and South America. (b) November 27, 1213	

2016 over South America. 1214	


